1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
use convert_case::{Case, Casing};
use proc_macro::TokenStream;
use quote::quote;
use syn::{parse_macro_input, Ident, ItemEnum};
/// Automatically implements `From` for each type in an aggregate type enum.
///
/// The supplied enum should have a single unnamed type parameter for each variant.
/// And the type for each variant should be unique in the enum.
///
/// The macro generates all the `From` implementations automatically.
#[proc_macro_attribute]
pub fn aggregate(_: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let variants2 = variants.clone();
let inner_types = variant_type_pairs.map(|(_v, t)| t);
let inner_types2 = inner_types.clone();
let output = quote! {
// First keep the original code in tact
#original_code
// Now write all the wrapping From impls
#(
impl From<#inner_types> for #outer_type {
fn from(b: #inner_types) -> Self {
Self::#variants(b)
}
}
)*
// Finally write all the un-wrapping From impls
#(
impl From<#outer_type> for #inner_types2 {
fn from(a: #outer_type) -> Self {
if let #outer_type::#variants2(b) = a {
b
} else {
panic!("wrong type or something...")
}
}
}
)*
};
output.into()
}
/// This macro treats the supplied enum as an aggregate verifier. As such, it implements the `From`
/// trait for eah of the inner types. Then it implements the `Verifier` trait for this type for this
/// enum by delegating to an inner type.
#[proc_macro_attribute]
pub fn tuxedo_verifier(_: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let vis = ast.vis;
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let inner_types = variant_type_pairs.map(|(_v, t)| t);
// Set up the name of the new associated type.
let mut redeemer_type_name = outer_type.to_string();
redeemer_type_name.push_str("Redeemer");
let redeemer_type = Ident::new(&redeemer_type_name, outer_type.span());
let type_for_new_unspendable = inner_types
.clone()
.next()
.expect("At least one verifier variant expected.");
// TODO there must be a better way to do this, right?
let inner_types2 = inner_types.clone();
let variants2 = variants.clone();
let variants3 = variants.clone();
let variant_for_new_unspendable = variants
.clone()
.next()
.expect("At least one verifier variant expected.");
let as_variants = variants.clone().map(|v| {
let s = format!("as_{}", v);
let s = s.to_case(Case::Snake);
Ident::new(&s, v.span())
});
let as_variants2 = as_variants.clone();
let output = quote! {
// Preserve the original enum, and write the From impls
#[tuxedo_core::aggregate]
#original_code
/// This type is generated by the `#[tuxedo_verifier]` macro.
/// It is a combined redeemer type for the redeemers of each individual verifier.
///
/// This type is accessible downstream as `<OuterVerifier as Verifier>::Redeemer`
#[derive(Debug, Encode, Decode)]
#vis enum #redeemer_type {
#(
#variants(<#inner_types as tuxedo_core::Verifier>::Redeemer),
)*
}
// Put a bunch of methods like `.as_variant1()` on the aggregate redeemer type
// These are necessary when unwrapping the onion.
// Might be that we should have a helper macro for this as well
impl #redeemer_type {
#(
pub fn #as_variants(&self) -> Option<&<#inner_types2 as tuxedo_core::Verifier>::Redeemer> {
match self {
Self::#variants2(inner) => Some(inner),
_ => None,
}
}
)*
}
impl tuxedo_core::Verifier for #outer_type {
type Redeemer = #redeemer_type;
fn verify(&self, simplified_tx: &[u8], block_number: u32, redeemer: &Self::Redeemer) -> bool {
match self {
#(
Self::#variants3(inner) => inner.verify(
simplified_tx,
block_number,
redeemer.#as_variants2().expect("redeemer variant exists because the macro constructed that type.")
),
)*
}
}
// The aggregation macro assumes that the first variant is able to produce a new unspendable instance.
// In the future this could be made nicer (but maybe not worth the complexity) by allowing an additional
// annotation to the one that can be used as unspendable eg `#[unspendable]`
// If this ever becomes a challenge just add an explicit `Unspendable` variant first.
fn new_unspendable() -> Option<Self> {
#type_for_new_unspendable::new_unspendable().map(|inner| Self::#variant_for_new_unspendable(inner))
}
}
};
output.into()
}
/// This macro treats the supplied enum as an aggregate constraint checker. As such, it implements the `From`
/// trait for eah of the inner types. Then it implements the `ConstraintChecker` trait for this type for this
/// enum by delegating to an inner type.
///
/// It also declares an associated error type. The error type has a variant for each inner constraint checker,
/// just like this original enum. however, the contained values in the error enum are of the corresponding types
/// for the inner constraint checker.
#[proc_macro_attribute]
pub fn tuxedo_constraint_checker(_attrs: TokenStream, body: TokenStream) -> TokenStream {
let ast = parse_macro_input!(body as ItemEnum);
let original_code = ast.clone();
let outer_type = ast.ident;
let variant_type_pairs = ast.variants.iter().map(|variant| {
// Make sure there is only a single field, and if not, give a helpful error
assert!(
variant.fields.len() == 1,
"Each variant must have a single unnamed field"
);
(
variant.ident.clone(),
variant
.fields
.iter()
.next()
.expect("exactly one field per variant")
.ty
.clone(),
)
});
let variants = variant_type_pairs.clone().map(|(v, _t)| v);
let inner_types = variant_type_pairs.map(|(_v, t)| t);
// Set up the names of the new associated types.
let mut error_type_name = outer_type.to_string();
error_type_name.push_str("Error");
let error_type = Ident::new(&error_type_name, outer_type.span());
let vis = ast.vis;
// TODO there must be a better way to do this, right?
let inner_types2 = inner_types.clone();
let inner_types3 = inner_types.clone();
let inner_types4 = inner_types.clone();
let variants2 = variants.clone();
let variants3 = variants.clone();
let variants4 = variants.clone();
let variants5 = variants.clone();
let output = quote! {
// Preserve the original enum, and write the From impls
#[tuxedo_core::aggregate]
#original_code
/// This type is generated by the `#[tuxedo_constraint_checker]` macro.
/// It is a combined error type for the errors of each individual checker.
///
/// This type is accessible downstream as `<OuterConstraintChecker as ConstraintChecker>::Error`
#[derive(Debug)]
#vis enum #error_type {
#(
#variants(<#inner_types as tuxedo_core::ConstraintChecker>::Error),
)*
}
impl tuxedo_core::ConstraintChecker for #outer_type {
type Error = #error_type;
fn check (
&self,
inputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
evicted_inputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
peeks: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
outputs: &[tuxedo_core::dynamic_typing::DynamicallyTypedData],
) -> Result<TransactionPriority, Self::Error> {
match self {
#(
Self::#variants5(inner) => inner.check(inputs, evicted_inputs, peeks, outputs).map_err(|e| Self::Error::#variants5(e)),
)*
}
}
fn is_inherent(&self) -> bool {
match self {
#(
Self::#variants2(inner) => inner.is_inherent(),
)*
}
}
fn create_inherents<V: tuxedo_core::Verifier>(
authoring_inherent_data: &InherentData,
previous_inherents: Vec<(tuxedo_core::types::Transaction<V, #outer_type>, sp_core::H256)>,
) -> Vec<tuxedo_core::types::Transaction<V, #outer_type>> {
let mut all_inherents = Vec::new();
#(
{
// Filter the previous inherents down to just the ones that came from this piece
let previous_inherents = previous_inherents
.iter()
.filter_map(|(tx, hash)| {
match tx.checker {
#outer_type::#variants3(ref inner_checker) => Some((tx.transform::<#inner_types3>(), *hash )),
_ => None,
}
})
.collect();
let inherents = <#inner_types3 as tuxedo_core::ConstraintChecker>::create_inherents(authoring_inherent_data, previous_inherents)
.iter()
.map(|tx| tx.transform::<#outer_type>())
.collect::<Vec<_>>();
all_inherents.extend(inherents);
}
)*
// Return the aggregate of all inherent extrinsics from all constituent constraint checkers.
all_inherents
}
fn check_inherents<V: tuxedo_core::Verifier>(
importing_inherent_data: &sp_inherents::InherentData,
inherents: Vec<tuxedo_core::types::Transaction<V, #outer_type>>,
result: &mut sp_inherents::CheckInherentsResult,
) {
#(
let relevant_inherents: Vec<tuxedo_core::types::Transaction<V, #inner_types4>> = inherents
.iter()
.filter_map(|tx| {
match tx.checker {
#outer_type::#variants4(ref inner_checker) => Some(tx.transform::<#inner_types4>()),
_ => None,
}
})
.collect();
<#inner_types4 as tuxedo_core::ConstraintChecker>::check_inherents(importing_inherent_data, relevant_inherents, result);
// According to https://paritytech.github.io/polkadot-sdk/master/sp_inherents/struct.CheckInherentsResult.html
// "When a fatal error occurs, all other errors are removed and the implementation needs to abort checking inherents."
if result.fatal_error() {
return;
}
)*
}
fn genesis_transactions<V: tuxedo_core::Verifier>() -> Vec<tuxedo_core::types::Transaction<V, #outer_type>> {
let mut all_transactions: Vec<tuxedo_core::types::Transaction<V, #outer_type>> = Vec::new();
#(
let transactions =
<#inner_types2 as tuxedo_core::ConstraintChecker>::genesis_transactions();
all_transactions.extend(
transactions
.into_iter()
.map(|tx| tx.transform::<#outer_type>())
.collect::<Vec<_>>()
);
)*
all_transactions
}
}
};
output.into()
}