1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
//! # Executive Module
//!
//! The executive is the main orchestrator for the entire runtime.
//! It has functions that implement the Core, BlockBuilder, and TxPool runtime APIs.
//!
//! It does all the reusable verification of UTXO transactions such as checking that there
//! are no duplicate inputs, and that the verifiers are satisfied.
use crate::{
constraint_checker::ConstraintChecker,
dynamic_typing::DynamicallyTypedData,
ensure,
inherents::PARENT_INHERENT_IDENTIFIER,
types::{
Block, BlockNumber, DispatchResult, Header, OutputRef, RedemptionStrategy, Transaction,
UtxoError,
},
utxo_set::TransparentUtxoSet,
verifier::Verifier,
EXTRINSIC_KEY, HEADER_KEY, HEIGHT_KEY, LOG_TARGET,
};
use log::debug;
use parity_scale_codec::{Decode, Encode};
use sp_core::H256;
use sp_inherents::{CheckInherentsResult, InherentData};
use sp_runtime::{
traits::{BlakeTwo256, Block as BlockT, Extrinsic, Hash as HashT, Header as HeaderT},
transaction_validity::{
InvalidTransaction, TransactionLongevity, TransactionSource, TransactionValidity,
TransactionValidityError, ValidTransaction,
},
ApplyExtrinsicResult, ExtrinsicInclusionMode, StateVersion,
};
use sp_std::marker::PhantomData;
use sp_std::{collections::btree_set::BTreeSet, vec::Vec};
/// The executive. Each runtime is encouraged to make a type alias called `Executive` that fills
/// in the proper generic types.
pub struct Executive<V, C>(PhantomData<(V, C)>);
impl<V, C> Executive<V, C>
where
V: Verifier,
C: ConstraintChecker,
Block<V, C>: BlockT<Extrinsic = Transaction<V, C>, Hash = sp_core::H256>,
Transaction<V, C>: Extrinsic,
{
/// Does pool-style validation of a tuxedo transaction.
/// Does not commit anything to storage.
/// This returns Ok even if some inputs are still missing because the tagged transaction pool can handle that.
/// We later check that there are no missing inputs in `apply_tuxedo_transaction`
pub fn validate_tuxedo_transaction(
transaction: &Transaction<V, C>,
) -> Result<ValidTransaction, UtxoError<C::Error>> {
debug!(
target: LOG_TARGET,
"validating tuxedo transaction",
);
// Make sure there are no duplicate inputs
// Duplicate peeks are allowed, although they are inefficient and wallets should not create such transactions
{
let input_set: BTreeSet<_> = transaction.inputs.iter().map(|o| o.encode()).collect();
ensure!(
input_set.len() == transaction.inputs.len(),
UtxoError::DuplicateInput
);
}
// Build the stripped transaction (with the redeemers stripped) and encode it
// This will be passed to the verifiers
let mut stripped = transaction.clone();
for input in stripped.inputs.iter_mut() {
input.redeemer = Default::default();
}
let stripped_encoded = stripped.encode();
// Check that the verifiers of all inputs are satisfied
// Keep a Vec of the input data for passing to the constraint checker
// Keep track of any missing inputs for use in the tagged transaction pool
let mut input_data = Vec::new();
let mut evicted_input_data = Vec::new();
let mut missing_inputs = Vec::new();
for input in transaction.inputs.iter() {
if let Some(input_utxo) = TransparentUtxoSet::<V>::peek_utxo(&input.output_ref) {
match input.redeemer {
RedemptionStrategy::Redemption(ref redeemer) => {
let redeemer = V::Redeemer::decode(&mut &redeemer[..])
.map_err(|_| UtxoError::VerifierError)?;
ensure!(
input_utxo.verifier.verify(
&stripped_encoded,
Self::block_height(),
&redeemer
),
UtxoError::VerifierError
);
input_data.push(input_utxo.payload);
}
RedemptionStrategy::Eviction => evicted_input_data.push(input_utxo.payload),
}
} else {
missing_inputs.push(input.output_ref.clone().encode());
}
}
// Make a Vec of the peek data for passing to the constraint checker
// Keep track of any missing peeks for use in the tagged transaction pool
// Use the same vec as previously to keep track of missing peeks
let mut peek_data = Vec::new();
for output_ref in transaction.peeks.iter() {
if let Some(peek_utxo) = TransparentUtxoSet::<V>::peek_utxo(output_ref) {
peek_data.push(peek_utxo.payload);
} else {
missing_inputs.push(output_ref.encode());
}
}
// Make sure no outputs already exist in storage
let tx_hash = BlakeTwo256::hash_of(&transaction.encode());
for index in 0..transaction.outputs.len() {
let output_ref = OutputRef {
tx_hash,
index: index as u32,
};
debug!(
target: LOG_TARGET,
"Checking for pre-existing output {:?}", output_ref
);
ensure!(
TransparentUtxoSet::<V>::peek_utxo(&output_ref).is_none(),
UtxoError::PreExistingOutput
);
}
// Calculate the tx-pool tags provided by this transaction, which
// are just the encoded OutputRefs
let provides = (0..transaction.outputs.len())
.map(|i| {
let output_ref = OutputRef {
tx_hash,
index: i as u32,
};
output_ref.encode()
})
.collect::<Vec<_>>();
// If any of the inputs are missing, we cannot make any more progress
// If they are all present, we may proceed to call the constraint checker
if !missing_inputs.is_empty() {
debug!(
target: LOG_TARGET,
"Transaction is valid but still has missing inputs. Returning early.",
);
return Ok(ValidTransaction {
requires: missing_inputs,
provides,
priority: 0,
longevity: TransactionLongevity::MAX,
propagate: true,
});
}
// Extract the payload data from each output
let output_data: Vec<DynamicallyTypedData> = transaction
.outputs
.iter()
.map(|o| o.payload.clone())
.collect();
// Call the constraint checker
transaction
.checker
.check(&input_data, &evicted_input_data, &peek_data, &output_data)
.map_err(UtxoError::ConstraintCheckerError)?;
// Return the valid transaction
Ok(ValidTransaction {
requires: Vec::new(),
provides,
priority: 0,
longevity: TransactionLongevity::MAX,
propagate: true,
})
}
/// Does full verification and application of tuxedo transactions.
/// Most of the validation happens in the call to `validate_tuxedo_transaction`.
/// Once those checks are done we make sure there are no missing inputs and then update storage.
pub fn apply_tuxedo_transaction(transaction: Transaction<V, C>) -> DispatchResult<C::Error> {
debug!(
target: LOG_TARGET,
"applying tuxedo transaction {:?}", transaction
);
// Re-do the pre-checks. These should have been done in the pool, but we can't
// guarantee that foreign nodes to these checks faithfully, so we need to check on-chain.
let valid_transaction = Self::validate_tuxedo_transaction(&transaction)?;
// If there are still missing inputs, we cannot execute this,
// although it would be valid in the pool
ensure!(
valid_transaction.requires.is_empty(),
UtxoError::MissingInput
);
// At this point, all validation is complete, so we can commit the storage changes.
Self::update_storage(transaction);
Ok(())
}
/// Helper function to update the utxo set according to the given transaction.
/// This function does absolutely no validation. It assumes that the transaction
/// has already passed validation. Changes proposed by the transaction are written
/// blindly to storage.
fn update_storage(transaction: Transaction<V, C>) {
// Remove verified UTXOs
for input in &transaction.inputs {
TransparentUtxoSet::<V>::consume_utxo(&input.output_ref);
}
debug!(
target: LOG_TARGET,
"Transaction before updating storage {:?}", transaction
);
// Write the newly created utxos
for (index, output) in transaction.outputs.iter().enumerate() {
let output_ref = OutputRef {
tx_hash: BlakeTwo256::hash_of(&transaction.encode()),
index: index as u32,
};
TransparentUtxoSet::<V>::store_utxo(output_ref, output);
}
}
/// A helper function that allows tuxedo runtimes to read the current block height
pub fn block_height() -> BlockNumber {
sp_io::storage::get(HEIGHT_KEY)
.and_then(|d| BlockNumber::decode(&mut &*d).ok())
.expect("A height is stored at the beginning of block one and never cleared.")
}
// These next three methods are for the block authoring workflow.
// Open the block, apply zero or more extrinsics, close the block
pub fn open_block(header: &Header) -> ExtrinsicInclusionMode {
debug!(
target: LOG_TARGET,
"Entering initialize_block. header: {:?}", header
);
// Store the transient partial header for updating at the end of the block.
// This will be removed from storage before the end of the block.
sp_io::storage::set(HEADER_KEY, &header.encode());
// Also store the height persistently so it is available when
// performing pool validations and other off-chain runtime calls.
sp_io::storage::set(HEIGHT_KEY, &header.number().encode());
// Tuxedo blocks always allow user transactions.
ExtrinsicInclusionMode::AllExtrinsics
}
pub fn apply_extrinsic(extrinsic: Transaction<V, C>) -> ApplyExtrinsicResult {
debug!(
target: LOG_TARGET,
"Entering apply_extrinsic: {:?}", extrinsic
);
// Append the current extrinsic to the transient list of extrinsics.
// This will be used when we calculate the extrinsics root at the end of the block.
let mut extrinsics = sp_io::storage::get(EXTRINSIC_KEY)
.and_then(|d| <Vec<Vec<u8>>>::decode(&mut &*d).ok())
.unwrap_or_default();
extrinsics.push(extrinsic.encode());
sp_io::storage::set(EXTRINSIC_KEY, &extrinsics.encode());
// Now actually apply the extrinsic
Self::apply_tuxedo_transaction(extrinsic).map_err(|e| {
log::warn!(
target: LOG_TARGET,
"Tuxedo Transaction did not apply successfully: {:?}",
e,
);
TransactionValidityError::Invalid(e.into())
})?;
Ok(Ok(()))
}
pub fn close_block() -> Header {
let mut header = sp_io::storage::get(HEADER_KEY)
.and_then(|d| Header::decode(&mut &*d).ok())
.expect("We initialized with header, it never got mutated, qed");
// the header itself contains the state root, so it cannot be inside the state (circular
// dependency..). Make sure in execute block path we have the same rule.
sp_io::storage::clear(HEADER_KEY);
let extrinsics = sp_io::storage::get(EXTRINSIC_KEY)
.and_then(|d| <Vec<Vec<u8>>>::decode(&mut &*d).ok())
.unwrap_or_default();
let extrinsics_root =
<Header as HeaderT>::Hashing::ordered_trie_root(extrinsics, StateVersion::V0);
sp_io::storage::clear(EXTRINSIC_KEY);
header.set_extrinsics_root(extrinsics_root);
let raw_state_root = &sp_io::storage::root(StateVersion::V1)[..];
let state_root = <Header as HeaderT>::Hash::decode(&mut &raw_state_root[..]).unwrap();
header.set_state_root(state_root);
debug!(target: LOG_TARGET, "finalizing block {:?}", header);
header
}
// This one is for the Core api. It is used to import blocks authored by foreign nodes.
pub fn execute_block(block: Block<V, C>) {
debug!(
target: LOG_TARGET,
"Entering execute_block. block: {:?}", block
);
// Store the header. Although we don't need to mutate it, we do need to make
// info, such as the block height, available to individual pieces. This will
// be cleared before the end of the block
sp_io::storage::set(HEADER_KEY, &block.header().encode());
// Also store the height persistently so it is available when
// performing pool validations and other off-chain runtime calls.
sp_io::storage::set(HEIGHT_KEY, &block.header().number().encode());
// Tuxedo requires that inherents are at the beginning (and soon end) of the
// block and not scattered throughout. We use this flag to enforce that.
let mut finished_with_opening_inherents = false;
// Apply each extrinsic
for extrinsic in block.extrinsics() {
// Enforce that inherents are in the right place
let current_tx_is_inherent = extrinsic.checker.is_inherent();
if current_tx_is_inherent && finished_with_opening_inherents {
panic!("Tried to execute opening inherent after switching to non-inherents.");
}
if !current_tx_is_inherent && !finished_with_opening_inherents {
// This is the first non-inherent, so we update our flag and continue.
finished_with_opening_inherents = true;
}
match Self::apply_tuxedo_transaction(extrinsic.clone()) {
Ok(()) => debug!(
target: LOG_TARGET,
"Successfully executed extrinsic: {:?}", extrinsic
),
Err(e) => panic!("{:?}", e),
}
}
// Clear the transient header out of storage
sp_io::storage::clear(HEADER_KEY);
// Check state root
let raw_state_root = &sp_io::storage::root(StateVersion::V1)[..];
let state_root = <Header as HeaderT>::Hash::decode(&mut &raw_state_root[..]).unwrap();
assert_eq!(
*block.header().state_root(),
state_root,
"state root mismatch"
);
// Check extrinsics root.
let extrinsics = block
.extrinsics()
.iter()
.map(|x| x.encode())
.collect::<Vec<_>>();
let extrinsics_root =
<Header as HeaderT>::Hashing::ordered_trie_root(extrinsics, StateVersion::V0);
assert_eq!(
*block.header().extrinsics_root(),
extrinsics_root,
"extrinsics root mismatch"
);
}
// This one is the pool api. It is used to make preliminary checks in the transaction pool
pub fn validate_transaction(
source: TransactionSource,
tx: Transaction<V, C>,
block_hash: <Block<V, C> as BlockT>::Hash,
) -> TransactionValidity {
debug!(
target: LOG_TARGET,
"Entering validate_transaction. source: {:?}, tx: {:?}, block hash: {:?}",
source,
tx,
block_hash
);
// Inherents are not permitted in the pool. They only come from the block author.
// We perform this check here rather than in the `validate_tuxedo_transaction` helper,
// because that helper is called again during on-chain execution. Inherents are valid
// during execution, so we do not want this check repeated.
let r = if tx.checker.is_inherent() {
Err(TransactionValidityError::Invalid(InvalidTransaction::Call))
} else {
Self::validate_tuxedo_transaction(&tx).map_err(|e| {
log::warn!(
target: LOG_TARGET,
"Tuxedo Transaction did not validate (in the pool): {:?}",
e,
);
TransactionValidityError::Invalid(e.into())
})
};
debug!(target: LOG_TARGET, "Validation result: {:?}", r);
r
}
// The next two are for the standard beginning-of-block inherent extrinsics.
pub fn inherent_extrinsics(data: sp_inherents::InherentData) -> Vec<Transaction<V, C>> {
debug!(
target: LOG_TARGET,
"Entering `inherent_extrinsics`."
);
// Extract the complete parent block from the inherent data
let parent: Block<V, C> = data
.get_data(&PARENT_INHERENT_IDENTIFIER)
.expect("Parent block inherent data should be able to decode.")
.expect("Parent block should be present among authoring inherent data.");
// Extract the inherents from the previous block, which can be found at the beginning of the extrinsics list.
// The parent is already imported, so we know it is valid and we know its inherents came first.
// We also annotate each transaction with its original hash for purposes of constructing output refs later.
// This is necessary because the transaction hash changes as we unwrap layers of aggregation,
// and we need an original universal transaction id.
let previous_blocks_inherents: Vec<(Transaction<V, C>, H256)> = parent
.extrinsics()
.iter()
.cloned()
.take_while(|tx| tx.checker.is_inherent())
.map(|tx| {
let id = BlakeTwo256::hash_of(&tx.encode());
(tx, id)
})
.collect();
debug!(
target: LOG_TARGET,
"The previous block had {} extrinsics ({} inherents).", parent.extrinsics().len(), previous_blocks_inherents.len()
);
// Call into constraint checker's own inherent hooks to create the actual transactions
C::create_inherents(&data, previous_blocks_inherents)
}
pub fn check_inherents(
block: Block<V, C>,
data: InherentData,
) -> sp_inherents::CheckInherentsResult {
debug!(
target: LOG_TARGET,
"Entering `check_inherents`"
);
let mut result = CheckInherentsResult::new();
// Tuxedo requires that all inherents come at the beginning of the block.
// (Soon we will also allow them at the end, but never throughout the body.)
// (TODO revise this logic once that is implemented.)
// At this off-chain pre-check stage, we assume that requirement is upheld.
// It will be verified later once we are executing on-chain.
let inherents: Vec<Transaction<V, C>> = block
.extrinsics()
.iter()
.cloned()
.take_while(|tx| tx.checker.is_inherent())
.collect();
C::check_inherents::<V>(&data, inherents, &mut result);
result
}
}
#[cfg(test)]
mod tests {
use sp_core::H256;
use sp_io::TestExternalities;
use sp_runtime::{generic::Header, transaction_validity::ValidTransactionBuilder};
use crate::{
constraint_checker::testing::TestConstraintChecker,
dynamic_typing::{testing::Bogus, UtxoData},
types::{Input, Output},
verifier::TestVerifier,
};
use super::*;
type TestTransaction = Transaction<TestVerifier, TestConstraintChecker>;
pub type TestHeader = sp_runtime::generic::Header<u32, BlakeTwo256>;
pub type TestBlock = sp_runtime::generic::Block<TestHeader, TestTransaction>;
pub type TestExecutive = Executive<TestVerifier, TestConstraintChecker>;
/// Construct a mock OutputRef from a transaction number and index in that transaction.
///
/// When setting up tests, it is often useful to have some Utxos in the storage
/// before the test begins. There are no real transactions before the test, so there
/// are also no real OutputRefs. This function constructs an OutputRef that can be
/// used in the test from a "transaction number" (a simple u32) and an output index in
/// that transaction (also a u32).
fn mock_output_ref(tx_num: u32, index: u32) -> OutputRef {
OutputRef {
tx_hash: H256::from_low_u64_le(tx_num as u64),
index,
}
}
/// Builder pattern for test transactions.
#[derive(Default)]
struct TestTransactionBuilder {
inputs: Vec<Input>,
peeks: Vec<OutputRef>,
outputs: Vec<Output<TestVerifier>>,
}
impl TestTransactionBuilder {
fn with_input(mut self, input: Input) -> Self {
self.inputs.push(input);
self
}
fn with_peek(mut self, peek: OutputRef) -> Self {
self.peeks.push(peek);
self
}
fn with_output(mut self, output: Output<TestVerifier>) -> Self {
self.outputs.push(output);
self
}
fn build(self, checks: bool, inherent: bool) -> TestTransaction {
TestTransaction {
inputs: self.inputs,
peeks: self.peeks,
outputs: self.outputs,
checker: TestConstraintChecker { checks, inherent },
}
}
}
/// Builds test externalities using a minimal builder pattern.
#[derive(Default)]
struct ExternalityBuilder {
utxos: Vec<(OutputRef, Output<TestVerifier>)>,
pre_header: Option<TestHeader>,
noted_extrinsics: Vec<Vec<u8>>,
}
impl ExternalityBuilder {
/// Add the given Utxo to the storage.
///
/// There are no real transactions to calculate OutputRefs so instead we
/// provide an output ref as a parameter. See the function `mock_output_ref`
/// for a convenient way to construct testing output refs.
///
/// For the Outputs themselves, this function accepts payloads of any type that
/// can be represented as DynamicallyTypedData, and a boolean about whether the
/// verifier should succeed or not.
fn with_utxo<T: UtxoData>(
mut self,
output_ref: OutputRef,
payload: T,
verifies: bool,
) -> Self {
let output = Output {
payload: payload.into(),
verifier: TestVerifier { verifies },
};
self.utxos.push((output_ref, output));
self
}
/// Add a preheader to the storage.
///
/// In normal execution `open_block` stores a header in storage
/// before any extrinsics are applied. This function allows setting up
/// a test case with a stored pre-header.
///
/// Rather than passing in a header, we pass in parts of it. This ensures
/// that a realistic pre-header (without extrinsics root or state root)
/// is stored.
///
/// Although a partial digest would be part of the pre-header, we have no
/// use case for setting one, so it is also omitted here.
fn with_pre_header(mut self, parent_hash: H256, number: u32) -> Self {
let h = TestHeader {
parent_hash,
number,
state_root: H256::zero(),
extrinsics_root: H256::zero(),
digest: Default::default(),
};
self.pre_header = Some(h);
self
}
/// Add a noted extrinsic to the state.
///
/// In normal block authoring, extrinsics are noted in state as they are
/// applied so that an extrinsics root can be calculated at the end of the
/// block. This function allows setting up a test case with som extrinsics
/// already noted.
///
/// The extrinsic is already encoded so that it doesn't have to be a proper
/// extrinsic, but can just be some example bytes.
fn with_noted_extrinsic(mut self, ext: Vec<u8>) -> Self {
self.noted_extrinsics.push(ext);
self
}
/// Build the test externalities with all the utxos already stored
fn build(self) -> TestExternalities {
let mut ext = TestExternalities::default();
// Write all the utxos
for (output_ref, output) in self.utxos {
ext.insert(output_ref.encode(), output.encode());
}
// Write a pre-header. If none was supplied, create a use a default one.
let pre_header = self.pre_header.unwrap_or(Header {
parent_hash: Default::default(),
number: 0,
state_root: H256::zero(),
extrinsics_root: H256::zero(),
digest: Default::default(),
});
ext.insert(HEADER_KEY.to_vec(), pre_header.encode());
// Write a block height.
ext.insert(HEIGHT_KEY.to_vec(), pre_header.number.encode());
// Write the noted extrinsics
ext.insert(EXTRINSIC_KEY.to_vec(), self.noted_extrinsics.encode());
ext
}
}
#[test]
fn validate_empty_works() {
let tx = TestTransactionBuilder::default().build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default().into();
assert_eq!(vt, expected_result);
}
#[test]
fn validate_with_input_works() {
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, true)
.build()
.execute_with(|| {
let input = Input {
output_ref,
redeemer: RedemptionStrategy::Redemption(Vec::new()),
};
let tx = TestTransactionBuilder::default()
.with_input(input)
.build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default().into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_peek_works() {
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, true)
.build()
.execute_with(|| {
let tx = TestTransactionBuilder::default()
.with_peek(output_ref)
.build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default().into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_output_works() {
ExternalityBuilder::default().build().execute_with(|| {
let output = Output {
payload: Bogus.into(),
verifier: TestVerifier { verifies: false },
};
let tx = TestTransactionBuilder::default()
.with_output(output)
.build(true, false);
// This is a real transaction, so we need to calculate a real OutputRef
let tx_hash = BlakeTwo256::hash_of(&tx.encode());
let output_ref = OutputRef { tx_hash, index: 0 };
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default()
.and_provides(output_ref)
.into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_missing_input_works() {
ExternalityBuilder::default().build().execute_with(|| {
let output_ref = mock_output_ref(0, 0);
let input = Input {
output_ref: output_ref.clone(),
redeemer: Default::default(),
};
let tx = TestTransactionBuilder::default()
.with_input(input)
.build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default()
.and_requires(output_ref)
.into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_missing_peek_works() {
ExternalityBuilder::default().build().execute_with(|| {
let output_ref = mock_output_ref(0, 0);
let tx = TestTransactionBuilder::default()
.with_peek(output_ref.clone())
.build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default()
.and_requires(output_ref)
.into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_duplicate_input_fails() {
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, false)
.build()
.execute_with(|| {
let input = Input {
output_ref,
redeemer: Default::default(),
};
let tx = TestTransactionBuilder::default()
.with_input(input.clone())
.with_input(input)
.build(true, false);
let result = TestExecutive::validate_tuxedo_transaction(&tx);
assert_eq!(result, Err(UtxoError::DuplicateInput));
});
}
#[test]
fn validate_with_duplicate_peek_works() {
// Peeking at the same input twice is considered valid. However, wallets should do their best
// not to construct such transactions whenever possible because it makes the transactions space inefficient.
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, false)
.build()
.execute_with(|| {
let tx = TestTransactionBuilder::default()
.with_peek(output_ref.clone())
.with_peek(output_ref)
.build(true, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx).unwrap();
let expected_result = ValidTransactionBuilder::default().into();
assert_eq!(vt, expected_result);
});
}
#[test]
fn validate_with_unsatisfied_verifier_fails() {
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, false)
.build()
.execute_with(|| {
let input = Input {
output_ref,
redeemer: Default::default(),
};
let tx = TestTransactionBuilder::default()
.with_input(input)
.build(true, false);
let result = TestExecutive::validate_tuxedo_transaction(&tx);
assert_eq!(result, Err(UtxoError::VerifierError));
});
}
#[test]
fn validate_with_pre_existing_output_fails() {
// This test requires a transaction to create an output at a location where
// an output already exists. This could happen in the wild when two transactions
// don't have inputs and have the same outputs. I initially couldn't think of how
// this could happen.
// First we create the transaction that will be submitted in the test.
let output = Output {
payload: Bogus.into(),
verifier: TestVerifier { verifies: false },
};
let tx = TestTransactionBuilder::default()
.with_output(output)
.build(true, false);
// Now calculate the output ref that the transaction creates so we can pre-populate the state.
let tx_hash = BlakeTwo256::hash_of(&tx.encode());
let output_ref = OutputRef { tx_hash, index: 0 };
ExternalityBuilder::default()
.with_utxo(output_ref, Bogus, false)
.build()
.execute_with(|| {
let result = TestExecutive::validate_tuxedo_transaction(&tx);
assert_eq!(result, Err(UtxoError::PreExistingOutput));
});
}
#[test]
fn validate_with_constraint_error_fails() {
ExternalityBuilder::default().build().execute_with(|| {
let tx = TestTransactionBuilder::default().build(false, false);
let vt = TestExecutive::validate_tuxedo_transaction(&tx);
assert_eq!(vt, Err(UtxoError::ConstraintCheckerError(())));
});
}
#[test]
fn apply_empty_works() {
ExternalityBuilder::default().build().execute_with(|| {
let tx = TestTransactionBuilder::default().build(true, false);
let vt = TestExecutive::apply_tuxedo_transaction(tx);
assert_eq!(vt, Ok(()));
});
}
#[test]
fn apply_with_missing_input_fails() {
ExternalityBuilder::default().build().execute_with(|| {
let output_ref = mock_output_ref(0, 0);
let input = Input {
output_ref: output_ref.clone(),
redeemer: Default::default(),
};
let tx = TestTransactionBuilder::default()
.with_input(input)
.build(true, false);
let vt = TestExecutive::apply_tuxedo_transaction(tx);
assert_eq!(vt, Err(UtxoError::MissingInput));
});
}
#[test]
fn apply_with_missing_peek_fails() {
ExternalityBuilder::default().build().execute_with(|| {
let output_ref = mock_output_ref(0, 0);
let tx = TestTransactionBuilder::default()
.with_peek(output_ref)
.build(true, false);
let vt = TestExecutive::apply_tuxedo_transaction(tx);
assert_eq!(vt, Err(UtxoError::MissingInput));
});
}
#[test]
fn update_storage_consumes_input() {
let output_ref = mock_output_ref(0, 0);
ExternalityBuilder::default()
.with_utxo(output_ref.clone(), Bogus, true)
.build()
.execute_with(|| {
let input = Input {
output_ref: output_ref.clone(),
redeemer: Default::default(),
};
let tx = TestTransactionBuilder::default()
.with_input(input)
.build(true, false);
// Commit the tx to storage
TestExecutive::update_storage(tx);
// Check whether the Input is still in storage
assert!(!sp_io::storage::exists(&output_ref.encode()));
});
}
#[test]
fn update_storage_adds_output() {
ExternalityBuilder::default().build().execute_with(|| {
let output = Output {
payload: Bogus.into(),
verifier: TestVerifier { verifies: false },
};
let tx = TestTransactionBuilder::default()
.with_output(output.clone())
.build(true, false);
let tx_hash = BlakeTwo256::hash_of(&tx.encode());
let output_ref = OutputRef { tx_hash, index: 0 };
// Commit the tx to storage
TestExecutive::update_storage(tx);
// Check whether the Output has been written to storage and the proper value is stored
let stored_bytes = sp_io::storage::get(&output_ref.encode()).unwrap();
let stored_value = Output::decode(&mut &stored_bytes[..]).unwrap();
assert_eq!(stored_value, output);
});
}
#[test]
fn open_block_works() {
let header = TestHeader {
parent_hash: H256::repeat_byte(5),
number: 5,
state_root: H256::repeat_byte(6),
extrinsics_root: H256::repeat_byte(7),
digest: Default::default(),
};
ExternalityBuilder::default().build().execute_with(|| {
// Call open block which just writes the header to storage
TestExecutive::open_block(&header);
// Fetch the header back out of storage
let retrieved_header = sp_io::storage::get(HEADER_KEY)
.and_then(|d| TestHeader::decode(&mut &*d).ok())
.expect("Open block should have written a header to storage");
// Make sure the header that came out is the same one that went in.
assert_eq!(retrieved_header, header);
});
}
#[test]
fn apply_valid_extrinsic_work() {
ExternalityBuilder::default().build().execute_with(|| {
let tx = TestTransactionBuilder::default().build(true, false);
let apply_result = TestExecutive::apply_extrinsic(tx.clone());
// Make sure the returned result is Ok
assert_eq!(apply_result, Ok(Ok(())));
// Make sure the transaction is noted in storage
let noted_extrinsics = sp_io::storage::get(EXTRINSIC_KEY)
.and_then(|d| <Vec<Vec<u8>>>::decode(&mut &*d).ok())
.unwrap_or_default();
assert_eq!(noted_extrinsics, vec![tx.encode()]);
});
}
#[test]
fn apply_invalid_extrinsic_rejects() {
ExternalityBuilder::default().build().execute_with(|| {
let tx = TestTransactionBuilder::default().build(false, false);
let apply_result = TestExecutive::apply_extrinsic(tx.clone());
// Make sure the returned result is an error
assert!(apply_result.is_err());
// TODO Do we actually want to note transactions that ultimately reject?
// Make sure the transaction is noted in storage
let noted_extrinsics = sp_io::storage::get(EXTRINSIC_KEY)
.and_then(|d| <Vec<Vec<u8>>>::decode(&mut &*d).ok())
.unwrap_or_default();
assert_eq!(noted_extrinsics, vec![tx.encode()]);
});
}
#[test]
fn close_block_works() {
let parent_hash = H256::repeat_byte(5);
let block_number = 6;
let extrinsic = vec![1, 2, 3];
ExternalityBuilder::default()
.with_pre_header(parent_hash, block_number)
.with_noted_extrinsic(extrinsic.clone())
.build()
.execute_with(|| {
let returned_header = TestExecutive::close_block();
// Make sure the header is as we expected
let raw_state_root = &sp_io::storage::root(StateVersion::V1)[..];
let state_root = H256::decode(&mut &raw_state_root[..]).unwrap();
let expected_header = TestHeader {
parent_hash,
number: block_number,
state_root,
extrinsics_root: BlakeTwo256::ordered_trie_root(
vec![extrinsic],
StateVersion::V0,
),
digest: Default::default(),
};
assert_eq!(returned_header, expected_header);
// Make sure the transient storage has been removed
assert!(!sp_io::storage::exists(HEADER_KEY));
assert!(!sp_io::storage::exists(EXTRINSIC_KEY));
});
}
#[test]
fn execute_empty_block_works() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"03170a2e7597b7b7e3d84c05391d139a62b157e78786d8c082f29dcf4c111314",
),
digest: Default::default(),
},
extrinsics: Vec::new(),
};
TestExecutive::execute_block(b);
});
}
#[test]
fn execute_block_with_transaction_works() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"d609af1c51521f5891054014cf667619067a93f4bca518b398f5a39aeb270cca",
),
digest: Default::default(),
},
extrinsics: vec![TestTransactionBuilder::default().build(true, false)],
};
TestExecutive::execute_block(b);
});
}
#[test]
#[should_panic(expected = "ConstraintCheckerError(())")]
fn execute_block_invalid_transaction() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"03170a2e7597b7b7e3d84c05391d139a62b157e78786d8c082f29dcf4c111314",
),
digest: Default::default(),
},
extrinsics: vec![TestTransactionBuilder::default().build(false, false)],
};
TestExecutive::execute_block(b);
});
}
#[test]
#[should_panic(expected = "state root mismatch")]
fn execute_block_state_root_mismatch() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: H256::zero(),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"03170a2e7597b7b7e3d84c05391d139a62b157e78786d8c082f29dcf4c111314",
),
digest: Default::default(),
},
extrinsics: Vec::new(),
};
TestExecutive::execute_block(b);
});
}
#[test]
#[should_panic(expected = "extrinsics root mismatch")]
fn execute_block_extrinsic_root_mismatch() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: H256::zero(),
digest: Default::default(),
},
extrinsics: Vec::new(),
};
TestExecutive::execute_block(b);
});
}
#[test]
fn execute_block_inherent_only_works() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"799fc6d36f68fc83ae3408de607006e02836181e91701aa3a8021960b1f3507c",
),
digest: Default::default(),
},
extrinsics: vec![TestTransactionBuilder::default().build(true, true)],
};
TestExecutive::execute_block(b);
});
}
#[test]
fn execute_block_inherent_first_works() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"bf3e98799022bee8f0a55659af5f498717736ae012d2aff6274cdb7c2b0d78e9",
),
digest: Default::default(),
},
extrinsics: vec![
TestTransactionBuilder::default().build(true, true),
TestTransactionBuilder::default().build(true, false),
],
};
TestExecutive::execute_block(b);
});
}
#[test]
#[should_panic(
expected = "Tried to execute opening inherent after switching to non-inherents."
)]
fn execute_block_inherents_must_be_first() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"df64890515cd8ef5a8e736248394f7c72a1df197bd400a4e31affcaf6e051984",
),
digest: Default::default(),
},
extrinsics: vec![
TestTransactionBuilder::default().build(true, false),
TestTransactionBuilder::default().build(true, true),
],
};
TestExecutive::execute_block(b);
});
}
#[test]
#[should_panic(
expected = "Tried to execute opening inherent after switching to non-inherents."
)]
fn execute_block_inherents_must_all_be_first() {
ExternalityBuilder::default().build().execute_with(|| {
let b = TestBlock {
header: TestHeader {
parent_hash: H256::zero(),
number: 6,
state_root: array_bytes::hex_n_into_unchecked(
"cc2d78f5977b6e9e16f4417f60cbd7edaad0c39a6a7cd21281e847da7dd210b9",
),
extrinsics_root: array_bytes::hex_n_into_unchecked(
"0x36601deae36de127b974e8498e118e348a50aa4aa94bc5713e29c56e0d37e44f",
),
digest: Default::default(),
},
extrinsics: vec![
TestTransactionBuilder::default().build(true, true),
TestTransactionBuilder::default().build(true, false),
TestTransactionBuilder::default().build(true, true),
],
};
TestExecutive::execute_block(b);
});
}
}